Трансмиссия - Авто.. Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы. Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе. Преподаватель высшей школы, кандидат технических наук. Кузнецов Юрий Александрович.


Шасси – это совокупность агрегатов, предназначенных для передачи механической энергии от двигателя к ведущим колесам, передвижения автомобиля и управления им. Шасси состоит из: - трансмиссии,- ходовой части,- системы управления.
Гидрообъемная трансмиссия (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам – энергию потока .
Трансмиссия автомобиля это не отдельный агрегат, а целая совокупность устройств и механизмов. Назначение трансмиссии – передача и изменение . Трансмиссия в автомобиле выполняет следующие функции.
Часть 1. Трансмиссия. Трансмиссия – это совокупность агрегатов и механизмов, соединяющих двигатель с ведущими колесами автомобиля.

Назначение трансмиссии: - передавать крутящий момент от двигателя к ведущим колесам; - изменять величину и направление крутящего момента; - перераспределять крутящий момент между ведущими колесами. По способу передачи и трансформации крутящего момента трансмиссии делятся на следующие виды: - Механическая трансмиссия (передает и преобразует механическую энергию). Преимущества их состоят в высоком коэффициенте полезного действия (КПД), компактности и малой массе, надежности в работе, относительной простоте в производстве и эксплуатации. Недостатком механической трансмиссии является ступенчатость изменения передаточных чисел, снижающая использование мощности двигателя. Инструкция Для Meike Mk950. подробнее.

Преимущества этих трансмиссий состоят в автоматическом изменении крутящего момента в зависимости от внешних сопротивлений, возможности автоматизации переключения передач и облегчении управления, фильтрации крутильных колебаний и снижении пиковых нагрузок, действующих на агрегаты трансмиссии и двигатель, и в повышении вследствие этого надежности и долговечности поршневого двигателя и трансмиссии.- Электромеханическая трансмиссия (преобразует механическую энергию в электрическую и после передачи к ведущим колесам – электрическую в механическую энергию). В электрических трансмиссиях ведущие колеса автомобиля приводятся в действие электродвигателями, к которым от генератора подается электрический ток. Электродвигатель с редуктором может располагаться непосредственно внутри колеса. Такая конструкция носит название мотор- колеса. В ней сцепление, коробка передач, а иногда и остальные агрегаты трансмиссии заменяются генератором и электродвигателем (или несколькими электродвигателями). Электромеханические трансмиссии могут работать на постоянном или переменном токе.
Трансмиссии на переменном токе компактнее и легче, но не обеспечивают бесступенчатого регулирования крутящего момента. Поэтому электромеханические трансмиссии, как правило, работают на постоянном токе.
Кроме того, эти трансмиссии могут иметь один тяговый электродвигатель или несколько, расположенных в каждом ведущем колесе. Электрические трансмиссии в ближайшем будущем получат широкое распространение при переходе к альтернативным источникам энергии- Гидрообъемная трансмиссия (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам – энергию потока жидкости в механическую энергию). В гидрообъемной трансмиссии гидравлический насос, приводимый в действие от двигателя внутреннего сгорания, соединяется трубопроводами с гидродвигателями, которые приводят в действие ведущие колеса автомобиля. Гидростатический напор жидкости, создаваемый насосом, преобразуется в крутящий момент на валах гидродвигателей. Гидрообъемные трансмиссии не получили широкого распространения на автомобилях из- за низкого КПД и высокой стоимости, но довольно часто используются в дорожно- строительных машинах.- Комбинированная трансмиссия (электромеханическая, гидромеханическая – «гибриды»). Наибольшее распространение в автомобилестроении в настоящий момент получили механические и гидромеханические трансмиссии. Если говорить просто, то механические трансмиссии – это автомобили с механической или роботизированной коробкой передач, а гидромеханические трансмиссии – это автомобили с автоматической коробкой передач.
Трансмиссия состоит: - сцепление,- коробка передач,- раздаточная коробка (полноприводные автомобили),- карданный вал (задне- или полноприводные автомобили),- дифференциал,- главная передача,- шарниры равных угловых скоростей. Сцепление. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при запуске двигателя, остановке и переключении передач, а также предохранения элементов трансмиссии от перегрузок. Сцепление автомобиля располагается между двигателем и коробкой передач. В зависимости от конструкции различают следующие типы сцепления: - фрикционное сцепление; - гидравлическое сцепление; - электромагнитное сцепление. Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости.
Электромагнитное сцепление управляется магнитным полем. Самым распространенным типом сцепления является фрикционное сцепление. По виду фрикционное сцепление различается: - однодисковое сцепление; - двухдисковое сцепление; - многодисковое сцепление. В зависимости от состояния поверхности трения может быть сухое сцепление и мокрое сцепление. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.
На современных автомобилях устанавливается в основном сухое однодисковое сцепление. В классическом виде сцепление в гидромеханических и вариаторных автоматических коробках передач отсутствует и присутствует только в роботизированных трансмиссиях и кулачковых автоматических коробках передач.
В роботизированных коробках передач выжимают сцепление и переключают передачи электроприводы, при этом, для большей плавности переключения существуют роботизированные коробки передач с двумя сцеплениями, работающими по очереди (одно сцепление в работе, другое, со следующей передачей, наготове). В кулачковых коробках, используемых на спортивных автомобилях, педаль сцепления используется только при старте, далее переключение передач происходит без использования педали. Принцип работы сцепления. Сцепление обеспечивает связь двигателя с коробкой передач (и далее до ведущих колес) за счет двух дисков, плотно прижатых друг к другу. На современных автомобилях используется постоянно включенное сцепление, то есть диски изначально прижаты друг к другу.
Нажимая на педаль сцепления, водитель через систему тяг и рычагов преодолевая усилие прижимных пружин отодвигает один из дисков от другого. Связь между двигателем и коробкой передач (ведущими колесами) разрывается (двигатель, например, может работать (вращаться коленчатый вал), а колеса могут быть неподвижны). Когда водитель отпускает педаль сцепления, отжатый диск (нажимной) под действием силы пружин снова прижимается к первому диску (ведомому) – связь восстановлена. Схема гидравлического привода выключения сцепления и механизма сцепления: 1 – трубопровод; 2 – нажимной диск; 3 – ведомый диск; 4 – маховик; 5 – коленчатый вал; 6 – картер сцепления; 7 – кожух сцепления; 8 – нажимные пружины; 9 – отжимные рычаги; 1. Подробнее: http: //systemsauto.
Коробка передач. Коробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля, а также длительного разъединения двигателя от трансмиссии. В зависимости от принципа действия различают следующие типы коробок передач: - ступенчатые; - бесступенчатые; - комбинированные. К ступенчатым коробкам передач относятся: - механическая коробка переключения передач; - роботизированная коробка передач. Механическая коробка передач имеет ручное переключение.